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Introduction

This interim report constitutes a summary of research performed under

Grant AFOSR-81-0047 during the year beginning October 1, 1983. First we

present a list of the personnel involved in the research effort. In the

next section we present a summary of the research results that have been

achieved. Then in the following section we briefly comment upon the

research in progress. This is followed by a list of publications supported

during this grant year.
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Summary of Results

In this section we will present a brief summary of our research results

published after October 1, 1983. The reference numbers in this section are

keyed to the publication list in the last section-) Most of our research

results are in the areas of quantization theory and detection theory., We

will begin our summary by discussing our results in quantization theory;

this will be followed by a presentation of our results in detection theory;

and finally, we will mention our results in other areas. . -

Quantization is the process by which data is reduced to a simpler,

more coarse representation which is more compatible with digital processing.

Loosely speaking, quantization is at the heart of analog to digital

conversion. It is an area which has increased in importance in the last

few years due to the burgeoning advances in digital technology. The typical

goal of quantization is to reduce data to a simpler representation without

causing much distortion; that is, the output of a quantizer should be close

to the input, with some appropriate measure of distance. An N-level - (

k-dimensional vector quantizer is a mapping Q: IRk -IRk which assigns the

input vector x to an output vector Q(x) chosen from a set of N vectors

y: y i=l,...,NI. Generally, the quantizer input is modelled as a

random vector X described by a k-variate distribution F. A measure of

quantizer performance is the distortion function

D(Q,F) = fd(xQ(x))dF(x). (1)

where d: IRk xIRk +IR is an appropriately chosen cost function. An optimal

N-level quantizer Q for the random vector X is one that minimizes (1) over

the class of all N-level quantizers.

There had apparently been a long-standing belief among researchers in
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quantization theory that optimal quantizers always exist. This existence

is important from the viewpoint of numerical design algorithms and in

studying convergence properties of sequences of quantizers; also, several

results in quantization theory are hypothesized upon the existence of

optimal quantizers. Several of our earlier efforts were concerned with

establishing conditions guaranteeing the existence of optimal quantizers.

For the case of difference-based distortion functions, i.e. d(x,y)

C(Ilx-yjl), we completely settled the existence question; in [16] we

presented necessary and sufficient conditions for an optimal quantizer

to exist. In [15] our interest was primarily concerned with convergence

properties of sequences of quantizers; however, as a side result, we did

establish a condition guaranteeing existence of optimum quantizers for

non-difference based distortion functions d(x,y). This result provided

a counterexample to a speculation of Gray, Kieffer, and Linde (Information

and Control, May 1980).

We have also been active in establishing convergence properties of

sequences of quantizers. These convergence results are important from

the viewpoint of numerical design algorithms, and they yield considerable

insight into the limiting behavior of sequences of quantizers. Suppose

that a sequence of probability measures P n converges weakly to a probability

measure P. Let Q be an optimal N-level quantizer for P n Does then n
distortion associated with the quantizer Qn and the measure Pn converge to

the optimal distortion for quantizing P with N-levels? Does the sequence

of optimal quantizers for the Pn's converge to a quantizer Q; and if so,

is Q optimal for P? Several of our convergence results have been focused

about these two questions. In [3] we considered difference based cost

functions, e.g. d(x-y), and we established results sufficient for affirmative
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answers to the above questions. Then in [15] we established conditions

sufficient for affirmative answers for non-difference based cost functions,

e.g. d(x,y). In each of the above works we also considered the above two

questions where Pn represented the empirical measure based on n iid samples

drawn from the measure P, and we established conditions sufficient for

almost sure convergence in the above two questions. In all of the above

convergence results we chose to put conditions on the cost function rather

than the distribution; the cost function is easier to control than the

(frequently not exactly known) underlying distribution.

These convergence results for sequences of quantizers are fairly

general and they form powerful tools for the study of quantization. For

example, one of the more practical problems associated with quantizers is

the problem of how to construct them. Most of the algorithms for quantizer

design involve successively improving a suboptimal quantizer, with the

procedure hopefully converging to an optimal quantizer. The above results

in [3] and [15] directly address this situation. For example, one of the

currently most popular design algorithms for vector quantization is the

so-called "Linde-Buzo-Gray algorithm" (IEEE Traneactions on Communications,

January 1980). As a by-product of one of our results in [3], we established

convergence of this algorithm for r-th power distortion measures, i.e.

d(x,y) = Ix-Yljr -  This is the first rigorous convergence result for this

algorithm in a reasonably general context. In [13] we used the results in

[3] to investigate convergence properties of quantizer design via successive

improvement upon suboptimal quantizers. If the input distribution F were

not known, we might form an estimate F based on n observations of the

n

input signal. As n becomes large, we might expect a reasonable estimate

to converge to the true distribution F. Intuitively, then, an optimal

5-
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quantizer designed for F and the resulting distortion, should closely

approximate those of an optimal quantizer for F. In [13] we established

properties of an estimator F so that the above reasoning would be valid.
n

Another aspect of our work on quantization was concerned with

practical, numerically-oriented design techniques for scalar quantizers.

Although the advantages of vector, or block, quantization are well known,

scalar quantizers are nevertheless in widespread use. In spite of

numerous elegant results in quantization theory, the actual practical

numerical design of scalar quantizers is still a challenging problem.

In [8] we presented a simple and straightforward technique for constructing

minimum mean squared error symmetric uniform scalar quantizers for some

common distributions on the data.

In the context of scalar minimum mean squared error quantization,

one of the most popular design techniques is the Lloyd-Max algorithm (IRE

Transactions on Information Theory, March 1960 and IM frmactions on

Informtion Theory, March 1982). Unfortunately, two potential problems

arise with the Lloyd-Max scheme. The first problem is how to get a good

initial guess for starting the iterative scheme, and the second problem

is how to intelligently update the algorithm. Both of these problems

were addressed in [1] and [18] for some common distributions on the data.

Our modifications of the Lloyd-Max algorithm resulted in a very fast design

algorithm for scalar minimum mean squared error quantization. For example,

we designed a 64-level quantizer for a Gaussian distribution with a high

degree of accuracy (the terminating condition for the Lloyd-Max algorithm

was set at 10-8) in 0.136 seconds of computer time on a CDC Cyber 170/750.

One of the non-mean-squared error criteria that frequently appears

in the literature is the criterion of mean absolute error. In 11) we
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presented an efficient method for the design of scalar minimum mean

absolute error quantizers. Our method was based upon a modification of

the Lloyd-Max algorithm mentioned above. As an example, we designed a

64-level minimum mean absolute error quantizer for a standard normal

random variable. Also in (11] we gave a closed-form solution for the

minimum mean absolute error quantizer for a Laplace random variable.

This closed-form solution stands in marked contrast to the laborious

numerical procedures often encountered in quantizer design problems.

A popular way of realizing a scalar quantizer is via a method known

as companding. A companding system consists of an invertible function

G: IR -[0,1] followed by a uniform N-level quantizer on [0,1], followed

by the inverse function G'1 (.). Any arbitrary N level scalar quantizer

can be realized via a companding system. This technique leads to a closed

form solution; however, it is asymptotic in nature. In some cases the

accuracy of the companding method has been overrated. In [7] we presented

a simple modification for improving the accuracy of the companding scheme.

For the generalized Gaussian density, f(x) = A exp[-clxlP], this modification

resulted in a straightforward formula for constructing a better compressor

function G.

Another research area in which we have recently obtained results is

the area of signal detection. The detection problem is modeled as a test

between two statistical hypotheses; we assume that under the null hypothesis

noise alone is being observed, and under the alternate hypothesis a signal

plus noise is being observed. We considered discrete time detection, s-. .

where we assumed that the observation is indexed by a subset of the

integers, e.g. x1 , x 2 ... xn.

In the case of discrete time detection where the noise and the signal

7



are stationary and the samples are independent, it is well known that the

Neyman-Pearson test has a test statistic which can be expressed as

n
J, g(Xi)

where Xi, i=l,...,n, represent the observations, and g(-) is an appro-

priately chosen function. In earlier work we had considered the problem

of constraining the test statistic to be of the above form and letting the

noise samples be "slightly" dependent. We then tried to choose the function

g(.) to best account for the dependency structure of the noise, in the sense

of the asymptotic relative efficiency (or Pitman efficiency) with respect

to any other choice for g(-). In [4] we investigated the problem of how

to choose g(o) when both the signal and the noise were modelled as 0-mixing

random processes, where we also allowed the noise to be dependent on the

signal over a finite window, such as signal dependent noise induced through

reverberation effects. In [5] we considered the problem of aporoximating

an optimal g(-) by a sequence of Borel measurable functions {gi(-)}. We

compared the performance resulting from the approximate nonlinearities to

the optimal performance, and we showed that the loss in performance can be

made arbitrarily small by making gi(.) appropriately close to g(.). We

allowed a strong mixing dependency structure for the (random) signal and

the noise, and we considered as examples specific forms, e.g. quantizers,

polynomials, for the gi(.). In [6] and [19] we continued part of this

investigation. Here we were concerned specifically with approximating the

nonlinearity g(.); and our interest was in establishing a lower bound on

the performance, where the lower bound was a function of the L2 distance

between the optimal g(-) and the actual nonlinearity of interest. Notice

that for several reasons one might not use the optimal g(.); for example,

-8-
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numerical approximations may be employed in solving for g(.), some of the

statistical information necessary for determining g(.) may only be

approximated, or perhaps one introduces another nonlinearity in an attc1pt

to lend robustness properties to the detection scheme. Our results in

[6) and [19) directly address the question of how the asymptotic

performance is degraded by perturbations in g(.).

The relative efficiency between two detectors is a ratio of the amount

of data required by one detector, relative to another, to attain a prescribed

level of performance. Although this concept is of fundamental importance

in the theory of signal detection, it has been successfully investigated in

only very few special cases. As an approximation to the relative efficiency,

engineers have frequently employed the asymptotic relative efficiency (ARE),

the limiting value of the relative efficiency (under suitable regularity

conditions) as the sample sizes required by the detectors approach infinity

The ARE was introduced in the statistical literature, where it is known as

the Pitman efficiency. Usually it can be determined in a fairly straight-

forward fashion, and this is due principally to an appeal to the central

limit theorem. The ARE is a limiting result; and in any practical

engineering situation, only a finite number of samples can be taken in the

context of discrete time detection. Thus it might not always be appropriate

to approximate the relative efficiency with the ARE. In [10] we considered

the discrete time detection of a known time varying signal in additive

noise, where the noise sequence is assumed to be a sequence of iid random

variables; and we studied the relative efficiency of the sign detector, a

popular nonparametric detector, and the correlation detector, which is

Neyman-Pearson optimal in the case when the noise is Gaussian. In this

work [10] we presented results illustrating the convergence of relative

-9
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efficiencies for both Gaussian noise and Laplace noise. Some examples were

given where the relative efficiencies did not quickly converge to the ARE.

In this work [10] we also presented bounds on the relative efficiency in

the case where the (deterministic) signal was unknown; for example, it

might only be known that at the i-th sample, S. -E < si < S. +, where s i

represents the signal, and si and e are known.
1

Kassam and Thomas (IEEE Transactions on Information Theory, July 1975)

considered the discrete time detection of a constant signal in m-dependent

noise. This scheme consisted of summing the first n samples, skipping

(i.e. throwing away) the next m, summing the next n, skipping the next m,

etc. They then applied the classical sign detector to the sequence of sums,

and they concluded that, asymptotically, n should be chosen as large as

possible to maximize performance. They then concluded that this method

could be extended to noise sequences that were strong mixing, and that

results under an m-dependent assumption yielded very close approximations.

In [17] we presented a rigorous analysis of this conjectural conclusion,

and we showed that a considerably more careful analysis was necessary for

the case of strong mixing noise. We showed how such a nonparametric detector

may be designed. We established an upper bound on the asymptotic performance

and we specified the form of a detector which achieves this upper bound. In

[17] we also considered the design of the detector under a finite sample

(i.e. non-asymptotic) criterion, and we showed that there can be a marked

difference in the detector designs resulting from the two criteria (i.e.

asymptotic and non-asymptotic).

Consider detecting a deterministic time varying signal in additive

noise based on a fixed (finite) number of observations. If the noise

process is mutually independent, then the solution of the problem is easily

- 10-
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formulated in terms of the Neyman-Pearson criterion in which the detection

probability is maximized for a constrained false alarm probability. The

resultant detector is then implemented by comparing the output of a

transformation of the data to a threshold, the transformation being

obtainable from the univariate noise distributions. However, with today's

high sampling rates, an assumption of independent samples is becoming

increasingly inappropriate. Although the Neyman-Pearson criterion can

still be applied in theory, the presence of dependency greatly compromises

its application. Lack of knowledge of the higher order noise distributions

results in the inability to specify completely the required transformation

(the likelihood ratio). We therefore have a situation in which the

problem is tractable under an independence assumption but it should most

properly be approached under the dependence assumption. Often in the past,

whatever dependency has been present has been ignored in order to obtain

tractable results. This has led to variations in the nominal values of

the detection probability and the false alarm probability because of the

residual dependency. If the dependency was "weak", then one would hope

that these variations would be acceptably small. In [2] and [14] we

investigated quantitative conditions which allowed determining when the

dependency can be ignored, and we presented a result which allowed bounding

the variations in the detection probability and the false alarm probability

induced by ignoring the dependency.

Consider once again the discrete time detection of a signal in

additive noise. Under a variety of fidelity criteria, an optimal detector

consists of mapping the data into the real numbers via the likelihood ratio

and then comparing the result to an appropriate threshold (determined by

the fidelity criterion). Clearly, the likelihood ratio represents the

. '. - " . . - .' - . - ' " " "- -----.----.-------



actual "processing" of the data. Assume that the noise distribution is

changed from its nominal model. When does the resulting likelihood ratio

(i.e. the data processor) change? In [12] we considered this situation

and we completely characterized the situation where the noise distribution

can change but the likelihood ratio remains unchanged. In particular, we

produced examples where the noise distribution can change dramatically,

S"." but the likelihood ratio remains the same.

In [9] we investigated an existing method (Delp and Mitchell, IEEE

Transactions on Communications, September 1979) for image compression known

as block truncation coding. The basic block truncation coding approach

employs a two level quantizer whose output levels are obtained through

matching the first two sample moments of the data before and after

quantization. We generalized this basic block truncation coding approach

by using two level quantizers which preserve higher order moments. This

generalization offered the potential for improved performance. Some

examples were given to illustrate the improvement in image quality.

Finally, in [20] we pointed out that even for bounded random variables

the conditional expectation does not always yield a minimum mean squared

error estimate. That is, we constructed two bounded random variables X

and Y and a function f: IR -IR such that Y =f(X) pointwise on the underlying

2 1
probability space but E{(Y-E{YIX})2 > 0

0
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Research in Progress

Our research is progressing very well in several directions. In

this section we will briefly describe the problems we are currently

investigating.

The newest research direction we are pursuing and the one in which

most of our effort is currently being expended deals with several aspects

of conditional expectations. Naturally, this is closely aligned with

mean squared error estimation. For example, let Y denote a second order

random variable of interest, and let Xl,...,Xk denote our data. One might

decide to estimate Y by using Y = E{YJX,.. . ,Xk}. However, in a practical

situation, the data is better modeled as QI(X 1 ),Q2 (X2 ), ..,Qk(Xk), the

result of an analog to digital conversion of the observations. This analog

to digital conversion would be the result of the digitization of the

observations; for example, they might be stored in a digital computer.

Thus, perhaps we should use as our estimate of Y the quantity Y =

22
E{YIQ 1(XI),..,Qk(Xk)}. How does E{(Y-Y) } compare with E{(Y-Y)2 }? How

should the quantizers {Qi} be designed to make E{(Y-Y)2 } close to E{(Y-Y)2}?

We are presently investigating this situation.

Another aspect of our investigations deals with the continuity of

a-algebras generated by random processes. Let X(t) denote a random

process, and let Ft = a{X(s), s<t}. Define

Ft+ =fn F
s >t

and

Ft = a{ U Fs}-
Ss<t

We say that the flow {Ft } is continuous at t if Ft. = Ft Ft+. In

numerous popular works on estimation theory (e.g. Gihman and Skorohod,

- 13-



The Theory of Stochastic Processes, Vols. I, II, III and Liptser and i
Shiryayev, Statistics of Random Proceesse I and I), it is simply assumed

that the flow of a-algebras is continuous, and this assumption plays a

fundamental role in many of the results. How restrictive is this

assumption? We are currently investigating properties of X(t) that are

consistent with the continuity of Ft. Our present results indicate that

there is little if any relation between the sample path regularity of

X(t) and the continuity of Ft. For example, we can exhibit random processes

with real analytic sample functions and discontinuous a-algebras, and we

can exhibit random processes with non-Lebesgue measurable sample functions

and continuous a-algebras. As implied earlier, the results of this

investigation are pertinent to the applicability of the results in several

popular texts. Also, these results are fundamental to relating estimates

based on observing a random process over an interval to estimates based on

observing a random process at only a finite set of times. For example,

how does

E{YIX(s), se[a,b]}

compare to

E{YIX(si), i=l,...,n},

where the sie[a,b]? Can we make them close in some sense? How should the

observation times s. be chosen?

One of the more practical problems we are investigating is data

reduction for image processing. Consider an image composed of pixels taking

bon one of several gray levels. For example, if there are 2 gray levels,

then each pixel can be represented by using b bits, and each image would

therefore be representable by a certain number of bits. We are presently

investigating a method for reducing the number of bits used to represent

- 14-
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an image without altering the image very much. Our results in this area

are still in an embryonic stage. We hope to characterize a class of images

and a method of data reduction so that the data can be reduced by a factor,

say k:l, and at the same time the image will undergo only negligible

alteration.

Our current work in the theory of signal detection is moving away from

asymptotic results and more toward detection based on a finite number of

observations. Two main directions in our investigation of signal detection

are concerned with properties of the relative efficiency between detectors

and with consequences of robustness in detection schemes. Engineers have

often used the asymptotic relative efficiency between two detectors as a

way of comparing the detectors. However, in a practical situation, the

quantity of.concern is actually the relative efficiency (based on a finite

number of samples). As mentioned in the previous section, we have already

achieved some preliminary results in this area. Another aspect of signal

detection that we are currently investigating is concerned with the concept

of robust signal detection. A saddle point approach to robust hypothesis

testing was established in the 1960's by Peter Huber. In the last few

years several investigators in signal processing have applied these

results to some situations in signal detection. However, there appears

to be an inadequate degree of understanding concerning the performance of

these robust detection schemes in particular situations. For example,

consider a simple hypothesis test using a nominal distribution. Now

consider testing composite hypotheses by letting the underlying noise

distribution be allowed to vary from the nominal distribution within

appropriately defined neighborhoods (e.g. Prohorov distance, Kolmorgorov

distance, Levy distance, etc.), and consider a robust detector designed

-15-'
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for this second situation. Naturally, this has the pleasing attribute of

being robust, but the question remains as to how the performance is

affected. by using the robust detector. For example, assume that the

robust detector is used for the nominal distribution. How much worse

will the performance be than if the Neymann-Pearson detector had been

used? Our present investigations are addressing this matter, and we have

found some cases where the robust detector for the nominal distribution

gave a detection probability less than half of that given by a Neymann-

Pearson detector (where both detectors had the same false alarm

probability).

The above summary describes our ongoing research. In the near future

we hope to focus more on data processing schemes designed under imperfect

or erroneous assumptions.

1
-16-

. . . . . . . . . . . . .



List of Publications

(1) F.S. Lu and G.L. Wise, "A Further Investigation of the Lloyd-Max
Algorithm for Quantizer Design," PROCEEDINGS OF THE TWENTY-FIRST ANNUAL
ALLERTON CONFERENCE ON COMMUNICATION, CONTROL, AND COMPUTING, Monticello,
Illinois, October 5-7, 1983, pp. 481-490.

(2) D.R. Halverson and G.L. Wise, "Signal Detection When Dependence Is
Neglected," PROCEEDINGS OF THE TWENTY-FIRST ANNUAL ALLERTON CONFERENCE ON
COMMUNICATION, CONTROL, AND COMPUTING, Monticello, Illinois, October 5-7,
1983, pp. 622-630.

(3) E.F. Abaya and G.L. Wise, "Convergence of Vector Quantizers with
Applications to Optimal Quantization," SIAM JOURNAL ON APPLIED MATHEMATICS,
Vol. 44, pp. 183-189, February 1984.

(4) D.R. Halverson and G.L. Wise, "Asymptotic Memoryless Discrete -Time
Detection of (phi)-Mixing Signals in (phi)-Mixing Noise," IEEE TRANSACTIONS
ON INFORMATION THEORY, Vol. IT-30, pp. 415-417, March 1984.

(5) D.R. Halverson and G.L. Wise, "Approximately Optimal Memoryless
Detection of Random Signals in Dependent Noise," IEEE TRANSACTIONS ON
INFORMATION THEORY, Vol. IT-30, pp. 420-424, March 1984.

(6) D.R. Halverson and G.L. Wise, "On the Approximation of Nonlinearities
for Memoryless Detection," PROCEEDINGS OF THE 1984 CONFERENCE ON INFORMATION
SCIENCES AND SYSTEMS, Princeton, New Jersey, March 14-16, 1984, pp. 302-305.

(7) F.-S. Lu and G.L. Wise, "A Modified Companding Method for Quantiza-
tion," PROCEEDINGS OF THE 1984 CONFERENCE ON INFORMATION SCIENCES AND'
SYSTEMS, Princeton, New Jersey, March 14-16, 1984, pp. 577-580.

(8) F.-S. Lu and G.L. Wise, "A Simple Approximation for Minimum Mean
Squared Error Symmetric Uniform Quantizers," IEEE TRANSACTIONS ON
COMMUNICATIONS, Vol. COM-32, pp. 470-474, April 1984.

(9) D.R. Halverson, N.C. Griswold, and G.L. Wise, "A Generalized Block
Truncation Coding Algorithm for Image Compression," IEEE TRANSACTIONS ON
ACOUSTICS, SPEECH, AND SIGNAL PROCESSING, Vol. ASSP-32, pp. 664-668, June
1984.

(10) Y.-C. Liu and G.L. Wise, "On the Relative Efficiency Between the
Correlation Detector and the Sign Detector," to appear in PROCEEDINGS OF THE
27TH MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS, Morgantown, West Virginia,
June 11-12, 1984.

(11) F.-S. Lu and G.L. Wise, "An Efficient Method for the Design of Minimum
Mean Absolute Error Quantizers," to appear in PROCEEDINGS OF THE 27TH
MIDWEST SYMPOSIUM ON CIRCUITS AND SYSTEMS, Morgantown, West Virginia, June
11-12, 1984.

- 17-



- 6- - -_01 - - ;-r-

(12) D.R. Halverson and G.L. Wise, "On the Optimality of Data Processors
for Signal Detection Over a Class of Contaminated Noises," to appear in
PROCEEDINGS OF THE TWENTY-SECOND ANNUAL ALLERTON CONFERENCE ON COMMUNICA-
TION, CONTROL, AND COMPUTING, Monticello, Illinois, October 3-5, 1984.

(13) E.F. Abaya and G.L. Wise, "Some Comments on the Design of Quantizers,"
to appear in PROCEEDINGS OF THE TWENTY-SECOND ANNUAL ALLERTON CONFERENCE ON
COMMUNICATION, CONTROL, AND COMPUTING, Monticello, Illinois, October 3-5,
1984.

(14) D.R. Halverson and G.L. Wise, "A Result on Neglecting Dependence in
Signal Detection," to appear in IEEE TRANSACTIONS ON INFORMATION THEORY,

. Vol. IT-30, November 1984.

(15) E.F. Abaya and G.L. Wise, "Convergence of Vector Quantizers with Non-
difference Based Distortion Measures," to appear in JOURNAL OF MULTIVARIATE
ANALYSIS.

(16) E.F. Abaya and G.L. Wise, "Some Remarks on the Existence of Optimal
Quantizers," to appear in STATISTICS AND PROBABILITY LETTERS.

(17) D.R. Halverson and G.L. Wise, "On the Performance of a Nonparametric
Detection Scheme for Strong Mixing Noise," to appear in IEEE TRANSACTIONS ON

.. -INFORMATION THEORY.

(18) F.-S. Lu and G.L. Wise, "A Further Investigation of Max's Algorithm
for Optimum Quantization," to appear in IEEE TRANSACTIONS ON COMMUNICATIONS.

(19) D.R. Halverson and G.L. Wise, "On Nonlinearities in Asymptotic
Memoryless Detection," to appear in IEEE TRANSACTIONS ON INFORMATION THEORY.

(20) G.L. Wise, "A Note on a Common Misconception in Estimation," to appear
in SYSTEMS AND CONTROL LETTERS.

-18-

0: i



FILMED

3-85

* DTIC




